ViT (Vision Transformer)
The ViT (Vision Transformer) is a transformer-based neural network architecture for image classification. It divides an image into fixed-size patches, linearly embeds each patch, adds position embeddings, and processes the resulting sequence of vectors through a standard transformer encoder.
The ViT model was introduced in the paper "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale" and has shown strong performance on image classification benchmarks.
jimm.models.vit.VisionTransformer
Bases: Module
Vision Transformer (ViT) model for image classification.
This implements the Vision Transformer as described in the paper "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale"
Source code in src/jimm/models/vit.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
|
__call__(x)
Forward pass of the Vision Transformer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
Float[Array, 'batch height width channels']
|
Input tensor with shape [batch, height, width, channels] |
required |
Returns:
Type | Description |
---|---|
Float[Array, 'batch num_classes']
|
Float[Array, "batch num_classes"]: Output logits with shape [batch, num_classes] |
Source code in src/jimm/models/vit.py
91 92 93 94 95 96 97 98 99 100 101 102 103 |
|
__init__(num_classes=1000, in_channels=3, img_size=224, patch_size=16, num_layers=12, num_heads=12, mlp_dim=3072, hidden_size=768, dropout_rate=0.1, use_quick_gelu=False, do_classification=True, dtype=jnp.float32, param_dtype=jnp.float32, rngs=nnx.Rngs(0), mesh=None)
Initialize a Vision Transformer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
num_classes
|
int
|
Number of output classes. Defaults to 1000. |
1000
|
in_channels
|
int
|
Number of input channels. Defaults to 3. |
3
|
img_size
|
int
|
Size of the input image (assumed square). Defaults to 224. |
224
|
patch_size
|
int
|
Size of each patch (assumed square). Defaults to 16. |
16
|
num_layers
|
int
|
Number of transformer layers. Defaults to 12. |
12
|
num_heads
|
int
|
Number of attention heads. Defaults to 12. |
12
|
mlp_dim
|
int
|
Size of the MLP dimension. Defaults to 3072. |
3072
|
hidden_size
|
int
|
Size of the hidden dimension. Defaults to 768. |
768
|
dropout_rate
|
float
|
Dropout rate. Defaults to 0.1. |
0.1
|
use_quick_gelu
|
bool
|
Whether to use quickgelu instead of gelu. Defaults to False. |
False
|
do_classification
|
bool
|
Whether to include the final classification head. Defaults to True. |
True
|
dtype
|
DTypeLike
|
Data type for computations. Defaults to jnp.float32. |
float32
|
param_dtype
|
DTypeLike
|
Data type for parameters. Defaults to jnp.float32. |
float32
|
rngs
|
Rngs
|
Random number generator keys. Defaults to nnx.Rngs(0). |
Rngs(0)
|
mesh
|
Mesh | None
|
Optional JAX device mesh for parameter sharding. Defaults to None. |
None
|
Source code in src/jimm/models/vit.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
|
from_pretrained(model_name_or_path, use_pytorch=False, mesh=None, dtype=jnp.float32)
classmethod
Load a pretrained Vision Transformer from a local path or HuggingFace Hub.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_name_or_path
|
str
|
Path to local weights or HuggingFace model ID. |
required |
use_pytorch
|
bool
|
Whether to load from PyTorch weights. Defaults to False. |
False
|
mesh
|
Mesh | None
|
Optional device mesh for parameter sharding. Defaults to None. |
None
|
dtype
|
DTypeLike
|
Data type for computations. Defaults to jnp.float32. |
float32
|
Returns:
Name | Type | Description |
---|---|---|
VisionTransformer |
VisionTransformer
|
Initialized Vision Transformer with pretrained weights |
Source code in src/jimm/models/vit.py
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
|